министерство просвещения российской федерации

Министерство образования Оренбургской области

Отдел образования, опеки и попечительства МО «Беляевский район»

МБОУ «Беляевская СОШ»

Утверждено: Директор МБОУ «Беляевская СОШ» _____/Пустобаева О.А./ Приказ № ____20 от « 20 » 08 2024 г.

РАБОЧАЯ ПРОГРАММА

Учебного курса «Алгебра и начала анализа» (углубленный уровень) для 11 класса

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

ЦЕЛИ ИЗУЧЕНИЯ УЧЕБНОГО КУРСА

Курс «Алгебра и начала математического анализа» является одним из наиболее значимых в программе старшей школы, поскольку, с одной стороны, он обеспечивает инструментальную базу для изучения всех естественнонаучных курсов, а с другой стороны, формирует логическое и абстрактное мышление учащихся на уровне, необходимом для освоения информатики, обществознания, истории, словесности и других дисциплин. В рамках данного курса учащиеся овладевают универсальным языком современной науки, которая формулирует свои достижения в математической форме.

Курс алгебры и начал математического анализа закладывает основу для успешного овладения законами физики, химии, биологии, понимания основных тенденций развития экономики и общественной жизни, позволяет ориентироваться в современных цифровых и компьютерных технологиях, уверенно использовать их для дальнейшего образования и в повседневной жизни. В тоже время овладение абстрактными и логически строгими конструкциями алгебры и математического анализа развивает умение находить закономерности, обосновывать истинность, доказывать утверждения с помощью индукции и рассуждать дедуктивно, использовать обобщение и конкретизацию, абстрагирование и аналогию, формирует креативное и критическое мышление.

В ходе изучения курса «Алгебра и начала математического анализа» учащиеся получают новый опыт решения прикладных задач, самостоятельного построения математических моделей реальных ситуаций, интерпретации полученных решений, знакомятся с примерами математических закономерностей в природе, науке и искусстве, с выдающимися математическими открытиями и их авторами.

Курс обладает значительным воспитательным потенциалом, который реализуется как через учебный материал, способствующий формированию научного мировоззрения, так и через специфику учебной деятельности, требующей продолжительной концентрации внимания, самостоятельности, аккуратности и ответственности за полученный результат.

В основе методики обучения алгебре и началам математического анализа лежит деятельностный принцип обучения.

В структуре курса «Алгебра и начала математического анализа» можно выделить следующие содержательно-методические линии: «Числа и вычисления», «Функции и графики», «Уравнения и неравенства», «Начала математического анализа», «Множества и логика». Все основные содержательно-методические линии изучаются на протяжении двух лет обучения в старшей школе, естественно дополняя друг друга и постепенно насыщаясь новыми темами и разделами. Можно с уверенностью сказать, что данный курс является интегративным, поскольку объединяет в себе содержание нескольких математических дисциплин, таких как алгебра, тригонометрия, математический анализ, теория множеств, математическая логика и др. По мере того, как учащиеся овладевают всё более широким математическим аппаратом, у них последовательно формируется и совершенствуется умение строить математическую модель реальной ситуации, применять знания, полученные при изучении курса, для решения самостоятельно сформулированной математической задачи, а затем интерпретировать свой ответ.

Содержательно-методическая линия «Числа и вычисления» завершает формирование навыков использования действительных чисел, которое было начато в основной школе. В старшей школе особое внимание уделяется формированию навыков рациональных вычислений, включающих в себя использование различных форм записи числа, умение делать прикидку, выполнять приближённые вычисления, оценивать числовые выражения, работать с математическими константами. Знакомые учащимся множества натуральных, целых, рациональных и действительных чисел дополняются множеством комплексных чисел. В каждом из этих множеств рассматриваются свойственные ему специфические задачи и операции: деление нацело, оперирование остатками на множестве целых чисел; особые свойства рациональных и иррациональных чисел; арифметические операции, а также корня степени извлечение натуральной на множестве комплексных чисел. Благодаря последовательному расширению круга используемых чисел и знакомству с возможностями их применения для решения различных задач формируется представление о единстве математики как науки и её роли в построении моделей реального мира; широко используются обобщение и конкретизация.

Линия «Уравнения и неравенства» реализуется на протяжении всего обучения в старшей школе, поскольку в каждом разделе Программы предусмотрено решение соответствующих задач. В результате учащиеся овладевают различными методами решения рациональных, иррациональных, показательных,

логарифмических и тригонометрических уравнений, неравенств и систем, а также задач, содержащих параметры. Полученные умения широко используются при исследовании функций с помощью производной, при решении прикладных задач и задач на нахождение наибольших и наименьших значений функции. Данная содержательная линия включает в себя также формирование умений формулам, преобразования иррациональных выполнять расчёты рациональных, тригонометрических выражений, а также выражений, содержащих степени и логарифмы. Благодаря изучению алгебраического материала происходит дальнейшее развитие алгоритмического абстрактного мышления учащихся, формируются навыки дедуктивных рассуждений, работы с символьными формами, представления закономерностей и зависимостей в виде равенств и неравенств. Алгебра предлагает эффективные инструменты для решения практических и естественнонаучных задач, наглядно демонстрирует свои возможности как языка науки.

Содержательно-методическая линия «Функции и графики» тесно переплетается с другими линиями курса, поскольку в каком-то смысле задаёт последовательность изучения материала. Изучение степенной, показательной, логарифмической и тригонометрических функций, их свойств и графиков, использование функций для решения задач из других учебных предметов и реальной жизни тесно связано как с математическим анализом, так и с решением уравнений и неравенств. При этом большое внимание уделяется формированию умения выражать формулами зависимости между различными величинами, исследовать полученные функции, строить их графики. Материал этой содержательной линии нацелен на развитие умений и навыков, позволяющих выражать зависимости между величинами в различной форме: аналитической, графической и словесной. Его изучение способствует развитию алгоритмического мышления, способности к обобщению и конкретизации, использованию аналогий.

Содержательная линия «Начала математического анализа» позволяет существенно расширить круг как математических, так и прикладных задач, доступных школьникам, так как у них появляется возможность строить графики сложных функций, определять их наибольшие и наименьшие значения, вычислять площади фигур и объёмы тел, находить скорости и ускорения процессов. Данная содержательная линия открывает новые возможности построения математических моделей реальных ситуаций, позволяет находить наилучшее решение в прикладных, в том числе социально-экономических, задачах. Знакомство с основами математического анализа способствует развитию абстрактного, формально-логического и креативного мышления, формированию умений распознавать проявления законов математики в науке, технике и искусстве. Учащиеся узнают о выдающихся результатах, полученных в ходе развития математики как науки, и об их авторах.

Содержательно-методическая линия «Множества и логика» включает в себя элементы теории множеств и математической логики. Теоретико-множественные представления пронизывают весь курс школьной математики и предлагают наиболее универсальный язык, объединяющий все разделы математики и её приложений, они связывают разные математические дисциплины и их приложения в единое целое. Поэтому важно дать возможность школьнику понимать теоретико-множественный язык современной математики и использовать его для выражения своих мыслей. Другим важным признаком математики как науки следует признать свойственную ей строгость обоснований и следование определённым правилам построения доказательств. Знакомство с элементами математической логики способствует развитию логического мышления учащихся, позволяет им строить свои рассуждения на основе логических правил, формирует навыки критического мышления.

В курсе «Алгебра и начала математического анализа» присутствуют основы математического моделирования, которые призваны способствовать формированию навыков построения моделей реальных ситуаций, исследования этих моделей с помощью аппарата алгебры и математического анализа, интерпретации полученных результатов. Такие задания вплетены в каждый из разделов Программы, поскольку весь материал курса широко используется для решения прикладных задач. При решении реальных практических задач учащиеся развивают наблюдательность, умение находить закономерности, абстрагироваться, использовать аналогию, обобщать и конкретизировать проблему. Деятельность по формированию навыков решения прикладных задач организуется в процессе изучения всех тем курса «Алгебра и начала математического анализа».

МЕСТО УЧЕБНОГО КУРСА В УЧЕБНОМ ПЛАНЕ

Согласно учебному плану в 11 классе изучается учебный курс «Алгебра и начала математического анализа», который включает в себя следующие основные разделы содержания: «Числа и вычисления», «Уравнения и неравенства», «Функции и графики», «Начала математического анализа», «Множества и логика».

В Учебном плане на изучение углублённого курса алгебры и начал математического анализа в 11 классе отводится 4 учебных часа в неделю, всего за год обучения не менее 136 учебных часов.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА «АЛГЕБРА И НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА»

Освоение учебного предмета «Алгебра и начала математического анализа» должно обеспечивать достижение на уровне среднего общего образования следующих личностных, метапредметных и предметных образовательных результатов:

ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ

Личностные результаты освоения программы учебного предмета «Математика» характеризуются:

Гражданское воспитание:

сформированностью гражданской позиции обучающегося как активного и ответственного члена российского общества, представлением о математических основах функционирования различных структур, явлений, процедур гражданского общества (выборы, опросы и пр.), умением взаимодействовать с социальными институтами в соответствии с их функциями и назначением.

Патриотическое воспитание:

сформированностью российской гражданской идентичности, уважения к прошлому и настоящему российской математики, ценностным отношением к достижениям российских математиков и российской математической школы, к использованию этих достижений в других науках, технологиях, сферах экономики.

Духовно-нравственное воспитание:

осознанием духовных ценностей российского народа; сформированностью нравственного сознания, этического поведения, связанного с практическим применением достижений науки и деятельностью учёного; осознанием личного вклада в построение устойчивого будущего.

Эстетическое воспитание:

эстетическим отношением к миру, включая эстетику математических закономерностей, объектов, задач, решений, рассуждений; восприимчивостью к математическим аспектам различных видов искусства.

Физическое воспитание:

сформированностью умения применять математические знания в интересах здорового и безопасного образа жизни, ответственного отношения к своему здоровью (здоровое питание, сбалансированный режим занятий и отдыха, регулярная физическая активность); физического совершенствования при занятиях спортивно-оздоровительной деятельностью.

Трудовое воспитание:

готовностью к труду, осознанием ценности трудолюбия; интересом к различным сферам профессиональной деятельности, связанным с математикой и её приложениями, умением совершать осознанный выбор будущей профессии и реализовывать собственные жизненные планы; готовностью и способностью к математическому образованию и самообразованию на протяжении всей жизни; готовностью к активному участию в решении практических задач математической направленности.

Экологическое воспитание:

сформированностью экологической культуры, пониманием влияния социально-экономических процессов на состояние природной и социальной среды, осознанием глобального характера экологических проблем; ориентацией на применение математических знаний для решения задач в области окружающей среды, планирования поступков и оценки их возможных последствий для окружающей среды.

Ценности научного познания:

сформированностью мировоззрения, соответствующего современному уровню развития науки и общественной практики, пониманием математической науки как сферы человеческой деятельности, этапов её развития и значимости для развития цивилизации; овладением языком математики и математической культурой как средством познания мира; готовностью осуществлять проектную и исследовательскую деятельность индивидуально и в группе.

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Метапредметные результаты освоения программы учебного предмета «Математика» характеризуются овладением универсальными познавательными действиями, универсальными коммуникативными действиями, универсальными регулятивными действиями.

1)Универсальные познавательные действия, обеспечивают формирование базовых когнитивных процессов обучающихся (освоение методов познания окружающего мира; применение логических, исследовательских операций, умений работать с информацией).

Базовые логические действия:

- выявлять и характеризовать существенные признаки математических объектов, понятий, отношений между понятиями; формулировать определения понятий; устанавливать существенный признак классификации, основания для обобщения и сравнения, критерии проводимого анализа;
- воспринимать, формулировать и преобразовывать суждения: утвердительные и отрицательные, единичные, частные и общие; условные;
- выявлять математические закономерности, взаимосвязи и противоречия в фактах, данных, наблюдениях и утверждениях; предлагать критерии для выявления закономерностей и противоречий;
- делать выводы с использованием законов логики, дедуктивных и индуктивных умозаключений, умозаключений по аналогии;
- проводить самостоятельно доказательства математических утверждений (прямые и от противного), выстраивать аргументацию, приводить примеры и контрпримеры; обосновывать собственные суждения и выводы;
- выбирать способ решения учебной задачи (сравнивать несколько вариантов решения, выбирать наиболее подходящий с учётом самостоятельно выделенных критериев).

Базовые исследовательские действия:

- использовать вопросы как исследовательский инструмент познания; формулировать вопросы, фиксирующие противоречие, проблему, устанавливать искомое и данное, формировать гипотезу, аргументировать свою позицию, мнение;
- проводить самостоятельно спланированный эксперимент, исследование по установлению особенностей математического объекта, явления, процесса, выявлению зависимостей между объектами, явлениями, процессами;
- самостоятельно формулировать обобщения и выводы по результатам проведенного наблюдения, исследования, оценивать достоверность полученных результатов, выводов и обобщений;
- прогнозировать возможное развитие процесса, а также выдвигать предположения о его развитии в новых условиях.

Работа с информацией:

- выявлять дефициты информации, данных, необходимых для ответа на вопрос и для решения задачи;
- выбирать информацию из источников различных типов, анализировать, систематизировать и интерпретировать информацию различных видов и форм представления;
- структурировать информацию, представлять её в различных формах, иллюстрировать графически;
 - оценивать надёжность информации по самостоятельно сформулированным критериям.
- 2) Универсальные коммуникативные действия, обеспечивают сформированность социальных навыков обучающихся.

Общение:

- воспринимать и формулировать суждения в соответствии с условиями и целями общения; ясно, точно, грамотно выражать свою точку зрения в устных и письменных текстах, давать пояснения по ходу решения задачи, комментировать полученный результат;
- в ходе обсуждения задавать вопросы по существу обсуждаемой темы, проблемы, решаемой задачи, высказывать идеи, нацеленные на поиск решения; сопоставлять свои суждения с суждениями других участников диалога, обнаруживать различие и сходство позиций; в корректной форме формулировать разногласия, свои возражения;
- представлять результаты решения задачи, эксперимента, исследования, проекта; самостоятельно выбирать формат выступления с учетом задач презентации и особенностей аудитории.

Сотрудничество:

- понимать и использовать преимущества командной и индивидуальной работы при решении учебных задач; принимать цель совместной деятельности, планировать организацию совместной работы, распределять виды работ, договариваться, обсуждать процесс и результат работы; обобщать мнения нескольких людей:
- участвовать в групповых формах работы (обсуждения, обмен мнениями, «мозговые штурмы» и т.п.); выполнять свою часть работы и координировать свои действия с другими членами команды;

оценивать качество своего вклада в общий продукт по критериям, сформулированным участниками взаимодействия.

3) Универсальные регулятивные действия, обеспечивают формирование смысловых установок и жизненных навыков личности.

Самоорганизация:

• составлять план, алгоритм решения задачи, выбирать способ решения с учётом имеющихся ресурсов и собственных возможностей, аргументировать и корректировать варианты решений с учётом новой информации.

Самоконтроль:

- владеть навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов; владеть способами самопроверки, самоконтроля процесса и результата решения математической задачи;
- предвидеть трудности, которые могут возникнуть при решении задачи, вносить коррективы в деятельность на основе новых обстоятельств, данных, найденных ошибок, выявленных трудностей;
- оценивать соответствие результата цели и условиям, объяснять причины достижения или недостижения результатов деятельности, находить ошибку, давать оценку приобретённому опыту.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Числа и вычисления

- Свободно оперировать понятиями: рациональное число, бесконечная периодическая дробь, проценты; иррациональное число; множества рациональных и действительных чисел; модуль действительного числа.
- Применять дроби и проценты для решения прикладных задач из различных отраслей знаний и реальной жизни.
- Применять приближённые вычисления, правила округления, прикидку и оценку результата вычислений.
- Свободно оперировать понятием: степень с целым показателем; использовать подходящую форму записи действительных чисел для решения практических задач и представления данных.
- Свободно оперировать понятием: арифметический корень натуральной степени.
- Свободно оперировать понятием: степень с рациональным показателем.
- Свободно оперировать понятиями: синус, косинус, тангенс, котангенс числового аргумента.
- Оперировать понятиями: арксинус, арккосинус и арктангенс числового аргумента.

Уравнения и неравенства

- Свободно оперировать понятиями: тождество, уравнение, неравенство, равносильные уравнения и уравнения-следствия; равносильные неравенства.
- Применять различные методы решения рациональных и дробно-рациональных уравнений; применять метод интервалов для решения неравенств.
- Использовать свойства действий с корнями для преобразования выражений.
- Выполнять преобразования числовых выражений, содержащих степени с рациональным показателем.
- Свободно оперировать понятиями: иррациональные уравнения; находить их решения с помощью равносильных переходов или осуществляя проверку корней.
- Применять основные тригонометрические формулы для преобразования тригонометрических выражений.
- Свободно оперировать понятием: тригонометрическое уравнение; применять необходимые формулы для решения основных типов тригонометрических уравнений.
- Моделировать реальные ситуации на языке алгебры, составлять выражения, уравнения, неравенства по условию задачи, исследовать построенные модели с использованием аппарата алгебры.

Функции и графики

- Свободно оперировать понятиями: функция, способы задания функции; взаимно обратные функции, композиция функций; график функции; выполнять элементарные преобразования графиков функций.
- Свободно оперировать понятиями: область определения и множество значений функции, нули функции, промежутки знакопостоянства.
- Свободно оперировать понятиями: чётные и нечётные функции, периодические функции, промежутки монотонности функции, максимумы и минимумы функции, наибольшее и наименьшее значение функции на промежутке.
- Свободно оперировать понятиями: степенная функция с натуральным и целым показателем, график степенной функции с натуральным и целым показателем; график корня *n*-ой степени как функции обратной степени с натуральным показателем.
- Оперировать понятиями: линейная, квадратичная и дробно-линейная функции; выполнять элементарное исследование и построение их графиков.
- Свободно оперировать понятиями: тригонометрическая окружность, определение тригонометрических функций числового аргумента.
- Использовать графики функций для исследования процессов и зависимостей при решении задач из других учебных предметов и реальной жизни; выражать формулами зависимости между величинами.

Начала математического анализа

- Свободно оперировать понятиями: непрерывные функции; точки разрыва графика функции; асимптоты графика функции.
- Свободно оперировать понятием: функция, непрерывная на отрезке; применять свойства непрерывных функций для решения задач.
- Свободно оперировать понятиями: первая и вторая производные функции, касательная к графику функции.
- Вычислять производные суммы, произведения, частного и композиции двух функций; знать производные элементарных функций.
- Использовать геометрический и физический смысл производной для решения задач.

Множества и логика

- Свободно оперировать понятиями: множество, операции над множествами.
- Использовать теоретико-множественный аппарат для описания реальных процессов и явлений, при решении задач из других учебных предметов.
- Свободно оперировать понятиями: определение, теорема, уравнение-следствие, свойство математического объекта, доказательство, равносильные уравнения и неравенства.

СОДЕРЖАНИЕ УЧЕБНОГО КУРСА

11 класс

Числа и вычисления

Натуральные и целые числа. Применение признаков делимости целых чисел, НОД и НОК, остатков по модулю, алгоритма Евклида для решения задач в целых числах.

Комплексные числа. Алгебраическая и тригонометрическая формы записи комплексного числа. Арифметические операции с комплексными числами. Изображение комплексных чисел на координатной плоскости. Формула Муавра. Корни *n*-ой степени из комплексного числа. Применение комплексных чисел для решения физических и геометрических задач.

Уравнения и неравенства

Система и совокупность уравнений и неравенств. Равносильные системы и системы-следствия. Равносильные неравенства.

Отбор корней тригонометрических уравнений с помощью тригонометрической окружности. Решение тригонометрических неравенств.

Основные методы решения показательных и логарифмических неравенств.

Основные методы решения иррациональных неравенств.

Основные методы решения систем и совокупностей рациональных, иррациональных, показательных и логарифмических уравнений.

Уравнения, неравенства и системы с параметрами.

Применение уравнений, систем и неравенств к решению математических задач и задач из различных областей науки и реальной жизни, интерпретация полученных результатов.

Функции и графики

График композиции функций. Геометрические образы уравнений и неравенств на координатной плоскости.

Тригонометрические функции, их свойства и графики.

Графические методы решения уравнений и неравенств. Графические методы решения задач с параметрами.

Использование графиков функций для исследования процессов и зависимостей, которые возникают при решении задач из других учебных предметов и реальной жизни.

Начала математического анализа

Применение производной к исследованию функций на монотонность и экстремумы. Нахождение наибольшего и наименьшего значений непрерывной функции на отрезке.

Применение производной для нахождения наилучшего решения в прикладных задачах, для определения скорости и ускорения процесса, заданного формулой или графиком.

Первообразная, основное свойство первообразных. Первообразные элементарных функций. Правила нахождения первообразных.

Интеграл. Геометрический смысл интеграла. Вычисление определённого интеграла по формуле Ньютона—Лейбница.

Применение интеграла для нахождения площадей плоских фигур и объёмов геометрических тел.

Примеры решений дифференциальных уравнений. Математическое моделирование реальных процессов с помощью дифференциальных уравнений.

Тематическое планирование учебного курса

11 класс (136 часов)

Название раздела	Основное содержание раздела	Основные виды деятельности
(количество	(темы)	обучающихся
часов)		
Исследование	Применение производной к	Строить график композиции функций с
функций с	исследованию функций на	помощью элементарного исследования и
помощью	монотонность и экстремумы.	свойств композиции.
производной	Нахождение наибольшего и	Строить геометрические образы уравнений и
(24 ч)	наименьшего значения	неравенств на координатной плоскости.
	непрерывной функции на отрезке.	Использовать производную для
	Применение производной для	исследования функции на монотонность и
	нахождения наилучшего решения	экстремумы; находить наибольшее и
	в прикладных задачах, для	наименьшее значения функции непрерывной
	определения скорости и ускорения	на отрезке;
	процесса, заданного формулой или	Строить графики функций на основании
	графиком.	проведённого исследования.
	Композиция функций.	Использовать производную для нахождения
	Геометрические образы уравнений	наилучшего решения в прикладных, в том
	и неравенств на координатной	числе социально-экономических, задачах, для
	плоскости	определения скорости и ускорения процесса,
		заданного формулой или графиком.
		Получать представление о применении
		производной в различных отраслях знаний
Первообразная и	Первообразная, основное свойство	Оперировать понятиями: первообразная и
интеграл	первообразных. Первообразные	определенный интеграл. Находить
(12 ч)	элементарных функций. Правила	первообразные элементарных функций и
	нахождения первообразных.	вычислять интеграл по формуле Ньютона –
	Интеграл. Геометрический смысл	Лейбница.
	интеграла. Вычисление	Находить площади плоских фигур и объёмы
	определённого интеграла по	тел с помощью определённого интеграла.
	формуле Ньютона-Лейбница.	Знакомиться с математическим
	populjus ribiotolia stellollilia.	Similari Ben C marentari reckimi

Графики тригонометрических функций. Тригонометрически е неравенства (16 ч)	Отбор корней тригонометрических уравнений с помощью тригонометрической окружности. Решение тригонометрических неравенств	моделированием на примере дифференциальных уравнений. Получать представление о значении введения понятия интеграла в развитии математики Использовать цифровые ресурсы для построения графиков тригонометрических функции и изучения их свойств. Решать тригонометрические уравнения и осуществлять отбор корней с помощью тригонометрической окружности. Применять формулы тригонометрии для решения основных типов тригонометрических неравенств. Использовать цифровые ресурсы для построения и исследования графиков функций
Иррациональные, показательные и логарифмические неравенств (24 ч)	Основные методы решения показательных и логарифмических неравенств. Основные методы решения иррациональных неравенств. Графические методы решения иррациональных, показательных и логарифмических уравнений и неравенств	Применять свойства показательной и логарифмической функций к решению показательных и логарифмических неравенств. Обосновать равносильность переходов. Решать иррациональные неравенства. Использовать графические методы и свойства входящих в уравнение или неравенство функций для решения задачи
Комплексные числа (10 ч)	Комплексные числа. Алгебраическая и тригонометрическая формы записи комплексного числа. Арифметические операции с комплексными числами. Изображение комплексных чисел на координатной плоскости. Формула Муавра. Корни <i>n</i> -ой степени из комплексного числа. Применение комплексных чисел для решения физических и геометрических задач	Оперировать понятиями: комплексное число и множество комплексных чисел. Представлять комплексные числа в алгебраической и тригонометрической форме. Выполнять арифметические операции с ними. Изображать комплексные числа на координатной плоскости. Применять формулу Муавра и получать представление о корнях <i>n</i> -ой степени из комплексного числа. Знакомиться с примерами применения комплексных чисел для решения геометрических и физических задач
Натуральные и целые числа (10 ч)	Натуральные и целые числа. Применение признаков делимости целых чисел, НОД и НОК, остатков по модулю, алгоритма Евклида для решения задач в целых числах	Оперировать понятиями: натуральное и целое число, множество натуральных чисел. Использовать признаки делимости целых чисел; остатки по модулю; НОД и НОК натуральных чисел; алгоритм Евклида для решения задач. Записывать натуральные числа в различных позиционных системах счисления
Системы рациональных, иррациональных показательных и логарифмических уравнений (12 ч)	Система и совокупность уравнений. Равносильные системы и системы-следствия. Основные методы решения систем и совокупностей рациональных, иррациональных, показательных и логарифмических уравнений. Применение уравнений, систем и неравенств к решению	Оперировать понятиями: система и совокупность уравнений и неравенств; решение системы или совокупности; равносильные системы и системы-следствия. Находить решения систем и совокупностей целых рациональных, иррациональных, показательных и логарифмических уравнений и неравенств. Применять системы уравнений к решению

MOTOMOTHINOCKIN DO HOLL II DO HOLL IID	TOYOTO DI IV DO HOU UD MODEUNIU IV ON HOOTOU
	текстовых задач из различных областей
- ·	знаний и реальной жизни;
	интерпретировать полученные решения.
1 7	Использовать цифровые ресурсы
	Выбирать способ решения рациональных,
показательные, логарифмические	иррациональных, показательных,
и тригонометрические уравнения,	логарифмических и тригонометрических
неравенства и системы с	уравнений и неравенств, содержащих модули
параметрами.	и параметры
Построение и исследование	Применять графические и аналитические
математических моделей реальных	методы для решения уравнений и неравенств
ситуаций с помощью уравнений,	с параметрами, а также исследование
систем уравнений и неравенств с	функций методами математического анализа.
параметрами	Строить и исследовать математические
	модели реальных ситуаций с помощью
	уравнений, неравенств и систем с
	параметрами
Основные понятия и методы	Моделировать реальные ситуации на языке
курса, обобщение и	алгебры, составлять выражения, уравнения,
систематизация знаний	неравенства и их системы по условию задачи,
	исследовать построенные модели с
	использованием аппарата алгебры.
	Применять функции для моделирования и
	исследования реальных процессов.
	Решать прикладные задачи, в том числе
	социально-экономического и физического
	характера, средствами алгебры и
	1 1 1 1 1 1 1
	неравенства и системы с параметрами. Построение и исследование математических моделей реальных ситуаций с помощью уравнений, систем уравнений и неравенств с параметрами Основные понятия и методы курса, обобщение и

УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ОБЯЗАТЕЛЬНЫЕ УЧЕБНЫЕ МАТЕРИАЛЫ ДЛЯ УЧЕНИКА

Мордкович А. Г. Алгебра и начала математического анализа. 10–11 класс, акционерное общество Издательство «Просвещение» (учебник)

Мордкович А. Г. Алгебра и начала математического анализа. 10–11 класс, акционерное общество Издательство «Просвещение» (задачник)

МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ УЧИТЕЛЯ

ЦИФРОВЫЕ ОБРАЗОВАТЕЛЬНЫЕ РЕСУРСЫ И РЕСУРСЫ СЕТИИНТЕРНЕТ

ЦОС Моя Школа